<u>9,2</u> 4) Discuss the convergence or elivergence of the serves moth nth term b) $n^{n}e^{-n}$: By the ratio test, we have $\left|\frac{K_{n+1}}{K_{n}}\right| = \frac{(n+1)^{n+1}}{n^{n}} \frac{e^{n}}{e^{n+1}} = \frac{(n+1)^{n+1}}{n^{n}} \frac{1}{e^{n}}$ for nlarge enough Hence, the sories diverges. cl) (lmn)e⁻ⁱⁿ: since ln(n)<n, me have Ue nout to consider new 15.12 $(lnn)e^{-\sqrt{n}} < ne^{-\sqrt{n}} = ne^{-n^2}$ for large n. So we have $\lim_{n \to \infty} N^{2} = \lim_{n \to \infty} \frac{N^{2}}{e^{\sqrt{n}}} = \lim_{n \to \infty} \frac{3n^{2}}{e^{\sqrt{n}}} = \lim_{n \to \infty} \frac{6n^{\frac{5}{2}}}{e^{\sqrt{n}}}$ $\frac{44R}{10} \lim_{n \to \infty} \frac{15n^2}{e^{\sqrt{n}}/25n} = \lim_{n \to \infty} \frac{30n^2}{e^{\sqrt{n}}} \frac{14R}{100} \frac{60n}{e^{\sqrt{n}}}$ $= \lim_{n \to 20} \frac{120 n^2}{e^{5n}} = \frac{44 R}{n \to 20} \lim_{e^{5n}/2\sqrt{n}} \frac{160 n^2}{e^{5n}} = \lim_{n \to 20} \frac{360 n}{e^{5n}}$ Hence for U large enough, we have (lun)er <ner < nz. So by comparison against Enz, we have that E(lun)er converges /.

14) Show that the sories 1+2-3+4+5-6+7++is divergent Pf Note the (3n)th partial sum is given by $S_{3n} = |+(\frac{1}{2}-\frac{1}{3}) + \dots + \frac{1}{3n-2} + (\frac{1}{3n-1}-\frac{1}{3n})$ Then since forcell n, $\frac{1}{3n}$, $\frac{1}{3n}$, we have $>\frac{1}{1+2}+\frac{1}{4+2}+\frac{1}{7+2}+\cdots+\frac{1}{3n}$ $= \frac{1}{3} \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{N} \right)$ nth portial sum of harmonic series, unbounded as n-200, hence duierges

23
1) Text the filaing series for convergence and for absolute invergence
a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2+1}$$
:
By Cor 9.2.9, consider $\lim_{n\to\infty} \left(n\left(1 - \left|\frac{\theta_{n+1}}{a_n}\right|\right)\right)$
 $= \lim_{n\to\infty} \left(n\left(1 - \left|\frac{(-1)^{n+2}}{(n+1)^2+1}\right|\right)\right)$
 $= \lim_{n\to\infty} \left(n\left(1 - \left|\frac{(-1)^{n+2}}{(n+1)^2+1}\right|\right)\right) = \lim_{n\to\infty} \left(n\left(1 - \frac{n^2+1}{n^2+2n+2}\right)\right)$
 $= \lim_{n\to\infty} \left(n - \frac{n^2+n}{n^2+2n+2}\right) = \lim_{n\to\infty} \frac{2n^2+n}{n^2+2n+2} = 2 > 1$.
Hence, the series is absolutely convergent and therefore is also
convergent. //
b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1}$. Note theref $\sum_{n=1}^{\infty} \left|\frac{(-1)^{n+1}}{n+1}\right| = \sum_{n=1}^{\infty} \frac{1}{n+1}$ convergent.
By alternating series test, we have:
 $\frac{1}{n+1} > 0$ for all n , $\lim_{n\to\infty} \frac{1}{n+1} = 0$, hence
 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1}$ is convergent.
So $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1}$ is convergent.

9) If the partial sums of San eve bounded, sun their the serves Sane-nt converges for t>0. If: Note that for t>D, ent → D as n→∞. Then since the partial sums of Ean are bounded, we can apply Dirichlet's test (9.3.4) to see theat Eanent converges.

 $\begin{array}{c} \frac{1}{1} \\ \frac{1}{2} \\$ X>0 $\lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n\to\infty} \left| \frac{n^{\alpha}}{n!} \cdot \frac{(n+1)!}{(n+1)^{\alpha}} \right| = \lim_{n\to\infty} (n+1) \left(\frac{n}{n+1} \right)^{\alpha}$ $=\lim_{h\to\infty}\frac{h(1)}{(1+h)^{e}}=+\infty$ So radius of convergence $R = +\infty$. d) $\sum_{n=2}^{\infty} \frac{x^n}{(lnn)}$ $\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{ln(n+1)}{ln(n)} \right|$ So raclius convergence R=1.